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Abstract

A quasi-boundary regularization leads to a two-point boundary value problem of the backward heat conduction equation. The ill-
posed problem is analyzed by using the semi-discretization numerical schemes. Then the resulting ordinary differential equations in
the discretized space are numerically integrated towards the time direction by the Lie-group shooting method to find the unknown initial
conditions. The key point is based on the erection of a one-step Lie group element G(T) and the formation of a generalized mid-point Lie
group element G(r). Then, by imposing GðT Þ ¼ GðrÞ we can search for the missing initial conditions through a minimum discrepancy of
the targets in terms of the weighting factor r 2 ð0; 1Þ. Several numerical examples were worked out to persuade that this novel approach
has good efficiency and accuracy. Although the final temperature is almost undetectable and/or is disturbed by large noise, the Lie group
shooting method is stable to recover the initial temperature very well.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of this paper is to study an ill-posed problem
that emerges from the one-dimensional backward heat con-
duction equation, but before proceeding we recall what is
meant by an ill-posed problem in partial differential equa-
tions. One may view a problem as being well-posed if a
unique solution exists which depends continuously on the
data; otherwise, it is an ill-posed problem. Mathematically
speaking, the inverse problem is much more difficult to deal
with than the direct one. In addition, the ill-posed problem
is very sensitive to the measurement errors.

The backward heat conduction problem (BHCP) is a
severely ill-posed problem in the sense that the solution is
unstable for a given final data. In order to calculate the
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BHCP, there appears certain progress in this issue, includ-
ing the boundary element method [1], the iterative bound-
ary element method [2–4], the regularization technique
[5,6], the operator-splitting method [7], the implicit inver-
sion method [8], the lattice-free high-order finite difference
method [9], the contraction group technique [10], the
method of fundamental solutions [11] and the backward
group preserving scheme [12]. A recent review of the
numerical BHCP was provided by Chiwiacowsky and de
Campos Velho [13].

After reformulating the BHCP by a quasi-boundary
value regularization, it results in a two-point boundary-
value problem (BVP) in the time-domain. Our approach
of BVPs is based on the group preserving scheme (GPS)
developed by Liu [14] for the integration of initial value
problems (IVPs). The GPS is very effective to deal with
the ordinary differential equations (ODEs) with special
structures as shown by Liu [15] for stiff equations and
Liu [16] for ODEs with constraints. The degree of the
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Nomenclature

A augmented matrix
a, b coefficients used in Eqs. (23), (24), (27), (28),

(34), (35)
cos h coefficient defined in Eq. (36)
f n-dimensional vector field
f̂ n-dimensional vector field used in Eq. (20)
F a vector defined in Eq. (25)
g nþ 1-dimensional Minkowski metric
G an element of Lorentz group
Gi, i ¼ 1; . . . ;K elements of Lorentz group
G0

0 the 00th component of G

h(x) the final data
h a vector defined in Eq. (9)
In n-dimensional unit matrix
l length of a homogeneous rod
L2 set of square-integrable functions
k � k Euclidean norm
n number of interior grid points
R the set of real numbers
Rn n-dimensional real space
R(i) random numbers
s noise level
S coefficient defined in Eq. (37)
SOoðn; 1Þ nþ 1-dimensional Lorentz group
soðn; 1Þ the Lie algebra of SOoðn; 1Þ
t time
t̂ time used in Eq. (22)

tk discretized time of kth step
Dt time increment
T final time
u temperature distribution
ui numerical value of u at the ith grid point
u n-dimensional vector
û n-dimensional vector used in Eq. (21)
u0 initial temperature distribution
uf temperature distribution at final time T

u0
i numerical value of u0 at the ith iteration

x space variable
Dx lattice spacing length of x

X nþ 1-dimensional augmented vector
X0 the value of X at the initial time
Xf the numerical value of X at final time T

Z coefficient defined in Eq. (39)

Greek symbols
a regularized parameter
a1 a positive integer
e a given stopping criterion
g a coefficient defined in Eq. (31)

Subscripts and superscripts

k index
T transpose
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ill-posedness of BHCP is over other inverse heat conduc-
tion problems including the sideways heat conduction
problem, which is dealt with the reconstruction of
unknown boundary conditions. The main motivation is
placed on an effective solution of the BHCP, which is one
of the inverse problems, and is different from the sideways
heat conduction problem recently reviewed and calculated
by Chang et al. [17] with the GPS.

The present paper will provide a new shooting method
for the BHCP. Our approach is based on the study by
Liu [18–20] with an extension applied to the solutions of
multiple-dimensional and multiple targets BVPs. In [18–
20] a Lie group shooting method (LGSM) is first developed
by the second author to solve the BVPs of the second order
ODEs. It is clear that our method can be applied to the
BHCP, since we are able to search for the missing initial
condition through an iterative solution of r in a compact
space of r 2 ð0; 1Þ, where the factor r is used in a general-
ized mid-point rule for the Lie group of one-step GPS.
Another advantage is that with the application of the Lie
group we can develop an effective numerical scheme, whose
accuracy is much better than other numerical methods.
Through this study, we may have an easy-implementation
and accurate LGSM used in the calculations of the
BHCP.
2. Backward heat conduction problems

We consider a homogeneous rod of length l. The rod is
sufficiently thin such that the temperature is uniformly dis-
tributed over the cross section of the rod at time t. The sur-
face of the rod is insulated and thus, there is no heat loss
through the boundary. In many practical engineering
application areas, we may want to recover all the past tem-
perature distribution uðx; tÞ, where t < T , of which the tem-
perature is presumed to be known at a given final time T.
Here, we consider the following problem:

ou
ot
¼ o2u

ox2
; 0 < x < l; 0 < t < T ; ð1Þ

uð0; tÞ ¼ u0ðtÞ; uðl; tÞ ¼ ulðtÞ; 0 6 t 6 T ; ð2Þ
uðx; T Þ ¼ hðxÞ; 0 6 x 6 l: ð3Þ

Here these three quantities of u, x and t are normalized,
such that they are dimensionless.

Eqs. (1)–(3) are called a one-dimensional backward heat
conduction problem, which is known to be highly ill-posed,
namely, the solution does not depend continuously on the
input data uðx; T Þ. Actually, the rapid decay of temperature
with time results in the fast fading memory of initial condi-
tions. Thus, the numerical recovery of initial temperature
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from the data measured at time T is a rather difficult
issue because of the influence of noise and computational
error.

Here, we are going to calculate the BHCP by a semi-dis-
cretization method [10,17], which replaces Eq. (1) by a set
of ODEs:

_uiðtÞ ¼
1

ðDxÞ2
½uiþ1ðtÞ � 2uiðtÞ þ ui�1ðtÞ�; ð4Þ

where Dx ¼ l=ðnþ 1Þ, xi ¼ iDx and uiðtÞ ¼ uðxi; tÞ: One way
to solve the ill-posed problem is to perturb it into a well-
posed one. A number of perturbing techniques have been
proposed, including a biharmonic regularization developed
by Lattés and Lions [21], and a hyperbolic regularization
proposed by Ames and Cobb [22]. It seems that Showalter
[23] first regularized the BHCP by considering a quasi-
boundary-value approximation to the final value problem,
that is, to supersede Eq. (3) by

auðx; 0Þ þ uðx; T Þ ¼ hðxÞ: ð5Þ

The problems (1), (2) and (5) can be shown to be well-
posed for each a > 0 as that done by Clark and Oppenhei-
mer [24] for the heat conduction inverse problem. Ames
and Payne [25] have investigated those regularizations from
the continuous dependence of solution on the regularized
parameter.

3. A new method for BHCP

Let us write

u :¼

u1

u2

..

.

un

2
66664

3
77775; f :¼ 1

ðDxÞ2

u2ðtÞ � 2u1ðtÞ þ u0ðtÞ
u3ðtÞ � 2u1ðtÞ þ u1ðtÞ

..

.

unþ1ðtÞ � 2unðtÞ þ un�1ðtÞ

2
66664

3
77775:

ð6Þ

The dependence of f on t is owing to u0ðtÞ and unþ1ðtÞ. Then
Eq. (4) for i ¼ 1; . . . ; n can be expressed as a vector form:

_u ¼ fðu; tÞ; u 2 Rn; t 2 R; ð7Þ

in which Eq. (5) as being a constraint is written to be

auð0Þ þ uðT Þ ¼ h; ð8Þ
where

h :¼

hðx1Þ
hðx2Þ

..

.

hðxnÞ

2
66664

3
77775: ð9Þ

We are going to develop a multi-dimensional LGSM,
which aims to find the initial value u(0), such that the
numerical solution uðT Þ can match Eq. (8) very well for
arbitrary a > 0:
3.1. The GPS

Liu [14] has embedded Eq. (7) into the following nþ 1-
dimensional augmented system:

_X :¼ d

dt

u

kuk

� �
¼

0n�n
fðu;tÞ
kuk

fTðu;tÞ
kuk 0

2
4

3
5 u

kuk

� �
:¼ AX; ð10Þ

where A is an element of the Lie algebra soðn; 1Þ satisfying

ATgþ gA ¼ 0; ð11Þ

with

g ¼
In 0n�1

01�n �1

� �
ð12Þ

a Minkowski metric. Here, In is the identity matrix of order
n, and the superscript T denotes the transpose. The aug-
mented variable X satisfies the cone condition:

XTgX ¼ u � u� kuk2 ¼ 0: ð13Þ

Therefore, Liu [14] has developed a group-preserving
numerical scheme as follows:

Xkþ1 ¼ GðkÞXk; ð14Þ

where Xk denotes the numerical value of X at the discrete
time tk, and GðkÞ 2 SOoðn; 1Þ satisfies

GTgG ¼ g; ð15Þ
det G ¼ 1; ð16Þ
G0

0 > 0; ð17Þ

where G0
0 is the 00th component of G.

3.2. Generalized mid-point rule

Applying scheme (14) to Eq. (10) with a specified initial
condition Xð0Þ ¼ X0, we can compute the solution XðtÞ by
GPS. Assuming that the total time T is divided by K steps,
that is, the time stepsize used in GPS is Dt ¼ T=K; and
starting from an initial augmented condition X0 ¼
ððu0ÞT; ku0kÞT; we may calculate the value Xf ¼ ððuðT ÞÞT;
kuðT ÞkÞT at time t ¼ T .

By applying Eq. (14) step-by-step, we can obtain

Xf ¼ GKðDtÞ . . . G1ðDtÞX0; ð18Þ

where Xf approximates the exact XðT Þ with a certain accu-
racy depending on Dt. However, let us recollect that each
Gi, i ¼ 1; . . . ;K; is an element of the Lie group SOoðn; 1Þ,
and by the closure property of the Lie group,
GKðDtÞ . . . G1ðDtÞ is also a Lie group denoted by G. Hence,
we have

Xf ¼ GX0: ð19Þ

This is a one-step transformation from X0 to Xf [26,27],
where Liu has applied the above method to estimate
the temperature-dependent heat conductivity and heat
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capacity, and showed that the new method has high accu-
racy and efficiency.

We can calculate G by a generalized mid-point rule,
which is obtained from an exponential mapping of A by
taking the values of the argument variables of A at a
generalized mid-point. The Lie group generated from
A 2 soðn; 1Þ by an exponential admits a closed-form repre-
sentation as follows:

G ¼
In þ
ða� 1Þ
kf̂k2

f̂ f̂T bf̂

kf̂k
bf̂T

kf̂k
a

2
66664

3
77775; ð20Þ

where

û ¼ ru0 þ ð1� rÞuf ; ð21Þ
f̂ ¼ fðû; t̂Þ; ð22Þ

a ¼ cosh
T kf̂k
kûk

 !
; ð23Þ

b ¼ sinh
Tkf̂k
kûk

 !
: ð24Þ

Here, we employ the initial u0 ¼ ðu1ð0Þ; . . . ; unð0ÞÞ and the
final uf ¼ ðu1ðT Þ; . . . ; unðT ÞÞ through a suitable weighting
factor r to calculate G, where r 2 ð0; 1Þ is a parameter
and t̂ ¼ rT : The above method is applied by a generalized
mid-point rule on the calculation of G, and the result is a
single-parameter Lie group element denoted by GðrÞ.

3.3. A Lie group mapping between two points on the cone

Let us define a new vector

F :¼ f̂

kûk ; ð25Þ

such that Eqs. (20), (23) and (24) can also be expressed as

G ¼
In þ ða�1Þ

kFk2 FFT bF
kFk

bFT

kFk a

2
4

3
5; ð26Þ

a ¼ coshðT kFkÞ; ð27Þ
b ¼ sinhðTkFjÞ: ð28Þ

From Eqs. (19) and (26) it follows that

uf ¼ u0 þ gF; ð29Þ

kufk ¼ aku0k þ b
F � u0

kFk ; ð30Þ

where

g :¼ ða� 1ÞF � u0 þ bku0kkFk
kFk2

: ð31Þ

Substituting

F ¼ 1

g
ðuf � u0Þ ð32Þ
into Eq. (30), we obtain

kufk
ku0k ¼ aþ b

ðuf � u0Þ � u0

kuf � u0kku0k ; ð33Þ

where

a ¼ cosh
Tkuf � u0k

g

� �
; ð34Þ

b ¼ sinh
Tkuf � u0k

g

� �
ð35Þ

are obtained by inserting Eq. (32) for F into Eqs. (27) and
(28).

Let

cos h :¼ ðu
f � u0Þ � u0

kuf � u0kku0k ; ð36Þ

S :¼ Tkuf � u0k; ð37Þ

and from Eqs. (33)–(35) it follows that

kufk
ku0k ¼ cosh

S
g

� �
þ cos h sinh

S
g

� �
: ð38Þ

By defining

Z :¼ exp
S
g

� �
; ð39Þ

we obtain a quadratic equation for Z from Eq. (38):

ð1þ cos hÞZ2 � 2kufk
ku0k Z þ 1� cos h ¼ 0: ð40Þ

The solution is found to be

Z ¼
kufk
ku0k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kufk
ku0k

� �2

� 1þ cos2 h

r
1þ cos h

; ð41Þ

and then from Eqs. (39) and (37) we obtain

g ¼ Tkuf � u0k
ln Z

: ð42Þ

Thus, between any two points ðu0; ku0kÞ and ðuf ; kufkÞ on
the cone, there exists a single-parameter Lie group element
GðT Þ 2 SOoðn; 1Þ mapping ðu0; ku0kÞ onto ðuf ; kufkÞ, which
is given by

uf

kufk

� �
¼ G

u0

ku0k

� �
; ð43Þ

where G is uniquely determined by u0 and uf through Eqs.
(26)–(28), (32) and (42).

3.4. The Lie-group shooting method

From Eqs. (25) and (32) it follows that

uf ¼ u0 þ g
f̂

kûk : ð44Þ

By Eq. (8) we attain

au0 þ uf ¼ h: ð45Þ
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Fig. 1. For Example 1 we plot the error of mis-matching the target with
respect to r.
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Eqs. (44) and (45) can be utilized to solve u0 as follows:

u0 ¼ 1

1þ a
h� g

f̂

kûk

" #
; ð46Þ

where g is calculated by Eq. (42).
The above derivation of the governing equations (44)–

(46) is stemmed from by letting the two F’s in Eqs. (25)
and (32) be equal, which, in terms of the Lie group ele-
ments G(T) and G(r), is essentially identical to the specifi-
cation of GðT Þ ¼ GðrÞ. For a specified r, Eqs. (46) can be
used to generate the new u0, until u0 converges according
to a given stopping criterion:

ku0
iþ1 � u0

i k 6 e; ð47Þ

which means that the norm of the difference between the
iþ 1th and the ith iterations of u0 is smaller than a given
stopping criterion e. If u0 is available, we can return to
Eq. (7) and integrate it to obtain uðT Þ. The above process
can be done for all r in the interval of r 2 ð0; 1Þ. Among
these solutions we pick up the best r, which leads to the
smallest error of Eq. (8). That is,

min
r2ð0;1Þ

kau0 þ uf � hk: ð48Þ

In the present paper, we will use the GPS to do those inte-
grating works.

4. Numerical examples

4.1. Example 1

In order to compare our numerical results with those
obtained by Lesnic et al. [28], Mera et al. [2,3,11] and Liu
et al. [12], let us first consider a one-dimensional bench-
mark BHCP:

ut ¼ uxx; 0 < x < 1; 0 < t < T ; ð49Þ

with the boundary conditions

uð0; tÞ ¼ uð1; tÞ ¼ 0; ð50Þ

and the final time condition

uðx; T Þ ¼ sinðpxÞ expð�p2T Þ: ð51Þ

The data to be retrieved is given by

uðx; tÞ ¼ sinðpxÞ expð�p2tÞ; T > t P 0: ð52Þ

The one-dimensional spatial domain [0, 1] is discretized by
N ¼ nþ 2 points including two boundary points, at which
the two boundary conditions u0ðtÞ ¼ unþ1ðtÞ ¼ 0 are im-
posed on the totally n differential equations obtained from
Eq. (4). We apply the LGSM developed in Section 3 for
this backward problem of n differential equations with
the final data given by Eq. (51).

Let us investigate some very severely ill-posed cases of
this benchmark BHCP, where T ¼ 1:5; 2:5; 3 were
employed such that when the final data are in the order
of Oð10�7Þ–Oð10�13Þ, we attempt to use the LGSM to
retrieve the desired initial data of sin px, which is in the
order of O(1). Before that we use this example to demon-
strate how to pick up the best r as specified by Eq. (48).
We plot the error of mis-matching the target with respect
to r in Fig. 1. It can be seen that there is a minimum point
as marked by the black point. When the range for search-
ing the minima is identified, we can pick up a more correct
value of r by searching for the minima in a more refined
range. On the other hand, we should stress that in all the
calculations, we can also employ a ¼ 0 without any diffi-
culty because Eq. (46) is still applicable.

For this very difficult problem, the method proposed by
Lesnic et al. [28] was unstable when T > 1. Conversely, the
results given by the LGSM with Dx ¼ 1=80 and Dt ¼ 0:01
for T ¼ 1:5, and Dx ¼ 1=100 and the same stepsize for
T ¼ 2:5; 3 were rather promising.

In Fig. 2, we present the numerical errors for these three
cases. The maximum error for the case of T ¼ 3 is about
2:8� 10�3: Liu et al. [12] have made a great progress for
the computations of BHCPs by the backward group pre-
serving scheme. For a severe case up to T ¼ 2:4, they have
provided a stable and accurate solution with the maximum
error occurring at x ¼ 0:5 about 0.008. The present results
are better than that paper, even for the severe case up to
T = 3, the maximum error occurring at x = 0.5 is about
0.0028.

To the authors’ best knowledge, there is no open report
that the numerical methods for this severely ill-posed
BHCP can provide more accurate results than us. Upon
compared with the numerical results computed by Mera
[11] with the method of fundamental solution (MFS)
together with the Tikhonov regularization technique (see
Fig. 5 of the above cited paper), we can say that the LGSM
is much better than the MFS.
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4.2. Example 2

Let us then consider the one-dimensional BHCP:

ut ¼ uxx; 0 < x < 1; 0 < t < T ; ð53Þ
with the boundary conditions

uð0; tÞ ¼ uð1; tÞ ¼ 0; ð54Þ
and the initial condition

uðx; 0Þ ¼
2x; for 0 6 x 6 0:5;

2ð1� xÞ; for 0:5 6 x 6 1:

	
ð55Þ

The exact solution is given by

uðx; tÞ ¼
X1
k¼0

8

p2ð2k þ 1Þ2
cos
ð2k þ 1Þpð2x� 1Þ

2
e½�p2ð2kþ1Þ2t�:

ð56Þ
The backward numerical solution is subjected to the

final condition at time T:

uðx; T Þ ¼
X1
k¼0

8

p2ð2k þ 1Þ2
cos
ð2k þ 1Þpð2x� 1Þ

2
e½�p2ð2kþ1Þ2T �:

ð57Þ
In practice, the data is attained by taking the sum of the
first one hundred terms, which guarantees the convergence
of the above series.

The difficulty of this problem is stemmed from that we
attempt to use a smooth final data to retrieve a non-smooth
initial data. In the literature, this one-dimensional BHCP is
called a triangular test [5,6,13]. For this computational
example, we have taken T = 1, Dt ¼ 0:01 and Dx ¼ 1=50:
The accuracy as can be seen from Fig. 3(a) is rather good
besides that at the turning point x = 0.5.

Muniz et al. [6] have calculated this example by different
regularization techniques. They have shown that the expli-
cit inversion method does not give satisfactory results even
with a small terminal time with T = 0.008 [5]. In addition,
they have calculated the initial data with a terminal time
T = 0.01 by the Tikhonov regularization, maximum
entropy principle and truncated singular value decomposi-
tion, and good results were obtained as shown in Figs. 4
and 5 of the above cited paper. However, when we apply
the LGSM to this problem with T = 0.01, Dt ¼ 0:0001
and Dx ¼ 1=50; good result can be seen from Fig. 3(b).
In the case of considering the temperature obtained
through a measurement, we are also concerned with the
stability of our method, which is investigated by adding
the level of random noise on the final data: hðxiÞ�
½1þ sRðiÞ� where we use the function RANDOM_NUM-
BER given in Fortran to generate the noisy data R(i),
which are random numbers in ½�1; 1�. The results are com-
pared with the numerical result without considering the
random noise in Fig. 4. The noise is obtained by multiply-
ing R(i) by a factor s ¼ 0:000039.



0.0 0.2 0.4 0.6 0.8 1.0

x

1.0

0.8

0.6

0.4

0.2

0.0

u 
( 

x,
0 

)

Exact

T=0.01

s=0.000039

Fig. 4. For Example 2 we compare the LGSM solution under the level of
noise s ¼ 0:000039 with the exact solution for T ¼ 0:01.

-4.0 -2.0 0.02 2.0 4.0

x

0.000

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

E
rr

or
 o

f u
 (

 x
,0

 )

-1.0

-0.8

-0.6

-0.4

-0.2

1.0

0.8

0.6

0.4

0.2

0.0

u 
( 

x,
0 

)

Exact
LGSM

a

b

Fig. 5. For Example 3 we compare the LGSM with exact solution with
T = 1 in (a), and plot the numerical error of u(x, 0) in (b).

J.-R. Chang et al. / International Journal of Heat and Mass Transfer 50 (2007) 2325–2332 2331
This example is a hard benchmark problem of BHCP to
test the numerical performance of new numerical methods.
From Fig. 3 it can be seen that at the middle point our
method leads to bad solution. All that showing the present
method still has room to ameliorate its accuracy, and we
will propose another approach to attain a better result in
a forthcoming paper.

4.3. Example 3

Let us further consider another one-dimensional bench-
mark BHCP:

ut ¼ uxx; �p < x < p; 0 < t < T ; ð58Þ

with the boundary conditions

uð�p; tÞ ¼ uðp; tÞ ¼ 0; ð59Þ

and the final time condition

uðx; T Þ ¼ e�a2
1
T sinða1xÞ: ð60Þ

The exact solution is given by

uðx; tÞ ¼ e�a2
1
t sinða1xÞ; ð61Þ

where a1 2 N is a positive integer.
We can demonstrate this ill-posed problem further by

considering the L2-norms of u and its final data:

kuðx; tÞk2
L2 ¼

Z T

0

Z p

�p
½e�a2

1
t sinða1xÞ�2 dxdt

¼ 1

2a2
1

ðe2a2
1
T � 1Þ

Z p

�p
½e�a2

1
T sinða1xÞ�2 dx: ð62Þ

Since for any C > 0 there exists a1 2 N such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2a2

1
T � 1

p
=ð

ffiffiffi
2
p

a1Þ > C; an inequality kuðx; tÞkL2 > CkuF kL2

holds for any C > 0. This means that the solution does not
depend on the final data continuously. Thus, the BHCP is
unstable for a given final data with respect to the L2-norm.
The larger a1 is, the worse is the final data depending on
the solution. In other words, the problem is more ill-posed
when a1 is larger.

In Fig. 5, we present the numerical results which being
compared with the exact solution (61) at time t ¼ 0 for
the case of a1 ¼ 3 and T = 1. In the calculation, the grid
length was taken to be Dx ¼ 2p=100 and the time stepsize
was taken to be Dt ¼ 0:01.

Owing to the rather small final data in the order of
O(10�4) when comparing with the desired initial data
sina1x of order O(1) to be retrieved, Mera [11] has men-
tioned that it is impossible to cope with this strongly ill-
posed problem by using the classical numerical approaches
and requires some special techniques to be employed. How-
ever, by using the LGSM we can treat this problem very
good as shown in Fig. 5(a), and the numerical error is very
small in the order Oð10�2Þ as shown in Fig. 5(b). The cur-
rent results are better than those of Liu et al. [12].

The numerical results under noise on the final data:
hðxiÞ þ sRðiÞ are compared with the exact result in Fig. 6,
where the grid length Dx ¼ 2p=100; the time stepsize
Dt ¼ 0:001, and T = 0.5 were chosen. It can be seen that
the noise levels with s ¼ 0:00005 and s ¼ 0:00006 disturb
the numerical solutions deviating from the exact solution
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Fig. 6. For Example 3 we compare the LGSM solutions under different
levels of noise s ¼ 0:00005; 0:00006 with the exact solution for T = 0.5.

2332 J.-R. Chang et al. / International Journal of Heat and Mass Transfer 50 (2007) 2325–2332
very small. However, we must stress that the noise levels as
compared with the data itself are large up to 7%.

5. Conclusions

The backward heat conduction problems are formulated
with a semi-discretization version. In order to evaluate the
missing initial conditions for the quasi-boundary value
problems of the BHCP, we have employed the Lie-group
shooting method towards the time direction to derive the
algebraic equations. Hence, we can solve them through a
minimum solution in a compact space of r 2 ð0; 1Þ: Several
numerical examples of the BHCP were examined to ensure
that the new algorithm has a fast convergence speed on the
solution of r in a pre-selected range smaller than (0, 1) by
using the minimum norm to fit the target equations, which
usually requires only a small number of trials to select the
best r. The new method is robust to against the noise dis-
turbance. Through this paper, it can be concluded that
the new shooting method is accurate, effective and stable.
Its numerical implementation is very simple and the com-
putation speed is very fast.
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